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Health risks of shipping pollution have
been "'underestimated’

The Independent (2017)
One giant container ship can emit almost the same amount of cancer and asthma-

causing chemicals as 50m cars, study finds Ail‘ quality on crUise Ship deCk worse
Clunate change threatens 50 years of progress in global health st tha nwo rld's most po“uted Cltl es' ;
= gt jg'* ~ investigation finds

S ‘Each day a cruise ship emits as much particulate matter as a million cars’

Chloe Farand | Monday 3 july 2017 23:16 BST | [339 comments

90,000 cargo ships travel the world's oceans. Photograph: Peter Maenhoudt/AP

The Guardian (2009)
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Nature of Deep-Sea Shipping



Deep-sea Shipping ® ‘
 Deep-sea Shipping

— Maritime transport of goods on intercontinental routes, crossing oceans,
as opposed to short sea shipping

David et. Al. (2015)



Key Figures °

e Transportation of 80~90% world's total commerce in tonnage

« Container liner carry 30% of global ton-miles, yet 80% of the
total value of shipment

* Longest oil tanker 458.46m, Longest container ship 400m,
Bulk carrier 363m, LNG Carrier 345m

 The biggest engine 14RT-FLEX 96C 80,080 kW

* Responsible for 938MT CO, in 2012 (2.6% global emissions)
and 18.6MT NO, (13%) and 10.6MT SOy (12%).



Characteristics of the Market

 Market demands driven by macroeconomic trends in global imports®
and exports LI

* International competition

 Many players involved

j Shipyard"

 Conservatisms

« Different type of business
— Liner (Containers, passengers, vehicles)
— Chartering (Permanent, Time, Spot)



Characteristics of operation -

 Long voyages

« Distinctive operational modes but majority of energy used in
the voyages

e Constant speed for its majority of operation

* Risk of being exposed to extreme weather

e Voyages in ballast mode

 Maintenance during the voyage



Pollution from the shipping and
challenges



Pollution from Shipping ) ‘

Fuel production

Operation
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Noise  Foreign Anti-fouling
organisms agent

IMO Regulations .




IMO Regulations on Water Pollution o

* Invasion of foreign species
— Ballast water convention: Ballast treatment system
— Bio-fouling convention: Anti-fouling and maintenance practice

o Oil spill
— MARPOL: Segregated ballast tank and double hull tankers
» Discharge of Sewage / Bilge water
— Annex IV of MARPOL.: Prohibition of discharge of sewage nearby or use of

sewage treatment plant
— MARPOL: Discharge of bilge and cleaning water from COT through oily
water separator or oily discharge and monitoring system

* Anti-fouling system
— Anti-fouling convention: Prohibition of the use of harmful organotin
compounds in anti-fouling paints

12



IMO Regulations on Harmful Gas Emissiong ‘

New ECAZ
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IMO Regulations on CO, (Green house gasy ‘
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Will EEDI solve the GHG challenges? @ ‘

million tonnes
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Cv‘.Z)2 emissions scenario EEDI and no-EEDI

——scenario 2 EEDI
| |=scenario 3 no-EEDI
Il cumulative emissions reduction =1214 million tonnes

Scenario EEDI has 3% emissions reduction of scenario no-EEDI

3% reduction compared to
no-EEDI
20I1 5 20.20 20I25 20I30 20.35 20I4O 20I45 20.50

Limitation
— Only applies to newbuilds

— EEDI calculated for a
single load case

— Economic driver to improve
fuel efficiency nevertheless



How much is international shipping responsiblﬁ ‘

 "Fair share"

“Shipping will make its fair and proportionate contribution towards realizing
the objectives that [the UNFCCC] and the global community pursue”

MEPC 63/5/5, Outcome of the United Nations Climate Change Conference held in Durban,
South Africa from 28 November to 11 December 2011, Note by the Secretaria

e How much is fair then? Smith et al.(2016)
rinple | stricter | Relaxed
Responsibility 18GT 33GT
Egalitarian 23GT 79.3GT

Responsibility principle: 1.5° target / 2° target

Egalitarian principle: Developed country / Developing country
16
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Possible Pathways
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« Complexity .
— Combinations of the options . )
— Interaction between the options
— Operational profiles
— Market Scenarios

e Uncertainties Vhat ship design to order Regulatigns
— Fuel price Technology
— World economy e

: : : -3 20 25

— Disruptive technologies = 1 : : i : -

e Long-term horizon for prediction Erikstad et al. (2015)
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Closer look at the options for
Reduction of Gaseous Emissions



Options for NOx emissions

SCR Technology

Reducing agent W _—
I

Scavenge air recsiver

EGR Technology

Exhaustreceiver

Scavengeairreceiver




Options for NOx emissions and Soot o

Equivalence Ratio ()

6 [
fuel - charge ' \ \\\
mixing line \|Increased mixing (lower ¢ at ignition)
ST jcomes from longer ignition delay via ||
A reductionin T, ... at injection.
4r soot i
reduction| { C soot
L production
: N zone Flame temperature
U reduction comes from
T reduced oxygen
S 210,:'3‘0'“: concentration via EGR.
0 15% "
0%, NOy
8% D pLreduction
TE e NO, production
| | Zone
2000 2500 3000

Temperature (K)

Potter, M., & Durrett, R. (2006). Design for compression ignition high-
efficiency clean combustion engines. 12th Annual Diesel Engine
Emissions Reduction (DEER) Conference.

Fuel injection characteristics
Variable compression ratio

Exhaust gas recirculation

Advanced combustion
- PCCI, HCCI

22



Options for SOx Emissions
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Options for emissions from the power system . ‘

* Fuel and technology options

MGO Surphur Marine fuel
LSHFO free fuel 100 —
90 |
Scrubber 0 _H B B
70 ' o) —(.1%S
EGR/SCR O O | 60 — AN 2 sk

50
2-stage TC O O

40
m—| NG
DF O O 20 | Low BN oil w— Other
10 |
=Tl

30 |
0

2010 2015 2020 2025 2030 2035

e HS5-HFO

Marine Fuel, %
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Options for emissions from the

Bio-fuel

— The biggest question is the availability.

» Technical, ethical challenge

power system

o, (@]
Released

o
(<]
&
; &
/4 V/ /4
WAL WA

Fuel Burnt in cars Fuel Manufacture
(Fuel pump)

co;
- Absorbed
OO . y O "

Table 8: Global biomass resource sizes

Source Definition Value in 2050 Classification
IEA Maximum technical 1500 EJ High band
potential

IEA Low risk potential 475 EJ Medium band
TIAM-UCL High scenario 236 EJ Medium Band
GET Chalmers Base-case 200 EJ Medium Band
IEA Roadmap BLUE Map Scenario | 145 EJ Medium Band
TIAM-UCL CCC estimate 38 EJ Low Band
TIAM-UCL Limited scenario 9EJ Low Band

Global supply 500 EJ in 2009

25




Options for emissions from the power system & ‘
* Hybrid Power / Propulsion System

Pprod = Fcons Pprod = I'cons T PESS

Spinning reserve
Power smoothing
Load smoothing
Load shifting
Peak shaving

Courtesy of Rolls-Royce (https://www.rolls-royce.com)
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Options for emissions from the hull

« Hull design and resistance reduction measures
— Larger vessels
— Slender hulls
— Reduced block coefficient
— Air lubrication
— Energy saving device
* Fins
» Pre-swirl device
» Propeller Boss Cap Fins
* Propeller duct



Options for emissions from operation o ‘

Reduced speed

A2/3V3
PProp — —Cc

Increased utilization
Larger vessels
Weather routing
Alternative sea routes

Power 120%
100%
80%

60%

40%

20%

0%

transport
capacity (income)
' power (fuel cost)
0% 20% 40% 60% 80% 100% 120%

Speed
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Options for emissions from business o ‘

o Oﬂ:sett'ng Smith et al. (2016)

Global carbon price

1

— Buying the carbon
offsets from other sector

— Possible buffer while
barriers for other solution
are lowered

— Price trend

indexed to 1 in 2050
o fa=] [ fa=] o o fa=]
) w 'S 2] o ~ o™
T T T

(=]
a

0 1 1 1 1 1 1 1
2010 2015 2020 2025 2030 2035 2040 2045 2050

Figure 12: Global carbon price consistent with a 2 degree temperature rise target, as estimated by TIAM
ucL



Pathway to CO, reduction and Case
Studies



Pathway for CO, reduction

o Study status quo in a regular basis
— IMO GHG Study 2000, 2009, 2014
— EU, IMO Monitoring, Reporting and Verifiction of fuel consumption

 Develop scenarios and strategies

* Model CO, emissions on variousl| levels
« Evaluate options

* Apply regulations and strategies

31



Tools for Analysis and Decision Support o ‘

» Design thinking and multi-level analysis

ef/r@’

The
Problem

Definition

FUNCTIONAL REQUIREMENTS

Analytical
process

Creative
process

EXOGENOUS DRIVERS
Consumption: population, wealth Fual Policy
Production. natural resources, manufaciurng Price, avalability Regulation, fiscal
Transport i fegnt L OTHERMODES
mand | _ Passen ger |
Allocation to mode: Other fos
- ship train, air
train, road, air
Routes
Port to port
thex e SHIPPING v
Shipping logistics
model
Ships E-_ ;h;}TD;d_'ﬂ z__s;e-e ﬂ-,-_‘i
5

Existing, retrofit, new
Technologles/fuels

L

Ship model l

energy, emission, cost

4
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Case Studies - CO2 Emissions from International
Shipping (Smith et. al, 2016) O ‘

e Models

‘ ; : Efficiency \

Ship D

P Design Measures
Costs I p ‘ Weather

: 7 Whole Ship
S Model (WSM)

System dynamics model Ship Concept Model

Performance
Evaluation
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Case Studies - CO2 Emissions from International
Shipping (Smith et. al, 2016) O

e Possible scenarios

- Regulation Scenario Techno economic

Fair share Offsets Fuel options Fuel Biofuel Speed NPV Barrier  Tech.

price reduct.  year cost

BAU - - All fuels 2-degree Lower Very 3 50% Full

except H2 price bound limited

4 18GT 0 All fuels 2-degree | Mid-range f§ Relaxed | 3 50% Full
price

5 23GT 20% All fuels 2-degree | Mid-range § Limited | 3 50% Full
price

6 33GT 20% All fuels 2-degree Lower- Limited | 3 50% Full
price bound

MR Tanker, Panamax BC, 5000TEU Container ship, Very Large Container ship as representative ships

34



million tonnes

Case Studies - CO2 Emissions from International
Shipping (Smith et. al, 2016)
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Case Studies - CO2 Emissions from International g
Shipping (Smith et. al, 2014) @

e Conclusion

— EEDI alone will hardly be an enough measure to meet the Paris
Agreement.

— The study recommends
* The net emissions will need to peak in 2025
» Absolute emission reductions should amount to 400MT by 2050

— In order to achieve absolute emissions reduction, shipping needs to
reduce its average carbon intensity by more than can be achieved
through energy efficiency improvements alone
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abatement options (Lindstad, 2015)

* Objective
. . . . . .
— Find a functional relationship between the key parameters (engine size,

fuel price, annual fuel consumption in ECA area) and the additional cost
for abatement options Models

Case studies — Assessment of cost as a function of ‘
a

e Method C, = CECA . FECA 4 (0. FO 4 (CAPEX
n

Dataset

Voyage profile

Vessel performance curve l

Specific fuel consumption
Fuel cost

CAPEX cost for options
Other operating cost

_'Pi+led'Paux>




Case studies — Assessment of cost as a function of
abatement options (Lindstad, 2015) )

15
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Fig. 3. New-built vessels with 4000 kW engine in Sulfur and Nitrogen ECA. -



Case studies — Assessment of cost as a function of
abatement options (Lindstad, 2015)

e Conclusion
— 6 ~ 15% annual cost increase with the best abatement options

— No single answer for the best option but a function of engine size,
annual fuel consumption in ECA and future fuel price

— Also depends on the regulations development of global sulfur cap
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Case studies — Hybrid propulsion system for a
VLCC (Alwan et. al, 2017) O ‘

Battery & PTO & PTI Main Swithboard

Aux. Engines
Frequency e ]
converter G O O O O
_____ | HziHz, 277 =7~ — T T T T T T T Battery

—_——
] w_ [ L >

v
Cp-Propeller Sf‘ﬂ & | 2-51&33%8?;\;;?% —_— — — —@—8 Thrusters

[ _
s coood)| | [

Waste heat
Gear with

PTO and PTI

— — Electric connection
= Mechanical connection

SG — Shaft Generator
G — Generator
M — Electric motor
CP — Controllable-Pitch
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Case studies — Hybrid propulsion system for a
VLCC (Alwan et. al, 2017) © ‘

Long-term Voyage simulation

Operational profile

Fuel/Emission @alcu@n

Power system modeling
Machine learning
Data analysis
Design of experiments
Surrogate modeling
Optimization

e 12
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Vessel speed

Configuration

Constraints
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Models
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Power System Design “



Case studies — Hybrid propulsion

VLCC (Alwan et. al, 2017)

system for a

 Results

Base Optimum Py Ppr Poen Ppatt

[ke/m] | [kg/m) | IMWI | [MW] | [MW] | [MW]

0.1641 (\1(201223/) 24.93 1.884 1.802 1.079
. (o}

0.1500 (3/'%)4;;) 24.41 2.375 1.641 1.266

0.1352 (\](3339362/) 23.93 3.554 1.239 2.606
. (o}

Hs | Scenar | Scenar | Scenar
iol io 2 io3
Om 5% 5% 5%
I1m | 10% 10% 12%
2m | 10% 20% 45%
3m | 55% 55% 28%
dm | 20% 10% 10%
Speed [kts] Frequency
Speed
9 15%
11 50%
13 20%
15 15%
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Case studies — Hybrid propulsion system for a

VLCC (Alwan et. al, 2017) O

e Conclusion

— High fidelity simulation models can be used for the design optimization
using surrogate modeling framework

— Metamodels were able to capture the complex physical behavior of the
system and understanding parameters relationships

— Demonstrated ability as a rapid design tool for testing multiple design
alternatives and sharing design constraints across subsystems and
system boundaries.
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Summary o

Deep-sea shipping is a key resource for global economic
development.

Pollutions from the shipping have been urgent problems, and
IMO regulations have effectively addressed them.

Challenges with GHG pose more complex problems with high
uncertainties in a long horizon.

Design thinking and decision support tools with capability of
multi-level analysis are necessary to solve the problems.
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